211 research outputs found

    Sloshing effects in innovative nuclear reactor pressure vessels

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.The reactor pressure vessel is a cylindrical shell structure which contains a rather large amount of liquid and many structures. Therefore, the fluid-structure interaction problems and the free oscillation of an incompressible liquid have attracted the attention because during a postulated earthquake (e.g. Design Basis Earthquake) the primary coolant surrounding the internals is accelerated and a significant fluid-structure hydrodynamic interaction is induced: in particular, the so called coolant “sloshing” influence on the stress level in the RPV. This effect is mainly important in the case of liquid metal primary coolant case and its coupling with the reactor vessel and its internals are considered. Numerical modelling proved to be very useful for the foreseen structures analysis because neither linear nor second-order potential theory is directly applicable when steep waves are present and high-order effects are significant. In what follow numerical results are presented and discussed highlighting the importance of the fluid-structure interaction effects in terms of stress intensity and were also used in order to obtain a preliminary validation of the numerical approach/models in comparison with experimental data.cs201

    Functional magnetic resonance imaging in the evaluation of the elastic properties of ascending aortic aneurysm

    Get PDF
    Objective: To evaluate the aortic wall elasticity using the maximal rate of systolic distension (MRSD) and maximal rate of diastolic recoil (MRDR) and their correlation with the aortic size index (ASI). Methods: Forty-eight patients with thoracic aortic aneurysm were enrolled in this study. A standard magnetic resonance imaging (MRI) protocol was used to calculate MRSD and MRDR. Both MRSD and MRDR were expressed as percentile of maximal area/10-3 sec. ASI (maximal aortic diameter/body surface area) was calculated. A correlation between MRSD, MRDR, ASI, and the patient’s age was performed using regression plot. Results: A significant correlation between MRSD (t=-4,36; r2=0.29; P≤0.0001), MRDR (t=3.92; r2=0.25; P=0.0003), and ASI (25±4.33 mm/m2; range 15,48-35,14 mm/m2) is observed. As ASI increases, aortic MRSD and MRDR decrease. Such inverse correlation between MRSD, MRDR, and ASI indicates increased stiffness of the ascending aorta. A significant correlation between the patient’s age and the decrease in MRSD and MRDR is observed. Conclusion: MRSD and MRDR are significantly correlated with ASI and the patient’s age. They seem to describe properly the increasing stiffness of aortas. These two new indexes provide a promising, accessible, and reproducible approach to evaluate the

    Accuracy of right atrial pressure estimation using a multi-parameter approach derived from inferior vena cava semi-automated edge-tracking echocardiography: a pilot study in patients with cardiovascular disorders

    Get PDF
    The echocardiographic estimation of right atrial pressure (RAP) is based on the size and inspiratory collapse of the inferior vena cava (IVC). However, this method has proven to have limits of reliability. The aim of this study is to assess feasibility and accuracy of a new semi-automated approach to estimate RAP. Standard acquired echocardiographic images were processed with a semi-automated technique. Indexes related to the collapsibility of the vessel during inspiration (Caval Index, CI) and new indexes of pulsatility, obtained considering only the stimulation due to either respiration (Respiratory Caval Index, RCI) or heartbeats (Cardiac Caval Index, CCI) were derived. Binary Tree Models (BTM) were then developed to estimate either 3 or 5 RAP classes (BTM3 and BTM5) using indexes estimated by the semi-automated technique. These BTMs were compared with two standard estimation (SE) echocardiographic methods, indicated as A and B, distinguishing among 3 and 5 RAP classes, respectively. Direct RAP measurements obtained during a right heart catheterization (RHC) were used as reference. 62 consecutive \u2018all-comers\u2019 patients that had a RHC were enrolled; 13 patients were excluded for technical reasons. Therefore 49 patients were included in this study (mean age 62.2\ua0\ub1\ua015.2\ua0years, 75.5% pulmonary hypertension, 34.7% severe left ventricular dysfunction and 51% right ventricular dysfunction). The SE methods showed poor accuracy for RAP estimation (method A: misclassification error, ME\ua0=\ua051%, R2\ua0=\ua00.22; method B: ME\ua0=\ua069%, R2\ua0=\ua00.26). Instead, the new semi-automated methods BTM3 and BTM5 have higher accuracy (ME\ua0=\ua014%, R2\ua0=\ua00.47 and ME\ua0=\ua022%, R2\ua0=\ua00.61, respectively). In conclusion, a multi-parametric approach using IVC indexes extracted by the semi-automated approach is a promising tool for a more accurate estimation of RAP

    Single amino acid change in gp41 region of HIV-1 alters bystander apoptosis and CD4 decline in humanized mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism by which HIV infection leads to a selective depletion of CD4 cells leading to immunodeficiency remains highly debated. Whether the loss of CD4 cells is a direct consequence of virus infection or bystander apoptosis of uninfected cells is also uncertain.</p> <p>Results</p> <p>We have addressed this issue in the humanized mouse model of HIV infection using a HIV variant with a point mutation in the gp41 region of the Env glycoprotein that alters its fusogenic activity. We demonstrate here that a single amino acid change (V38E) altering the cell-to-cell fusion activity of the Env minimizes CD4 loss in humanized mice without altering viral replication. This differential pathogenesis was associated with a lack of bystander apoptosis induction by V38E virus even in the presence of similar levels of infected cells. Interestingly, immune activation was observed with both WT and V38E infection suggesting that the two phenomena are likely not interdependent in the mouse model.</p> <p>Conclusions</p> <p>We conclude that Env fusion activity is one of the determinants of HIV pathogenesis and it may be possible to attenuate HIV by targeting gp41.</p

    Monocytes Contribute to Differential Immune Pressure on R5 versus X4 HIV through the Adipocytokine Visfatin/NAMPT

    Get PDF
    Background: The immune system exerts a diversifying selection pressure on HIV through cellular, humoral and innate mechanisms. This pressure drives viral evolution throughout infection. A better understanding of the natural immune pressure on the virus during infection is warranted, given the clinical interest in eliciting and sustaining an immune response to HIV which can help to control the infection. We undertook to evaluate the potential of the novel HIV-induced, monocyte-derived factor visfatin to modulate viral infection, as part of the innate immune pressure on viral populations. Results: We show that visfatin is capable of selectively inhibiting infection by R5 HIV strains in macrophages and resting PBMC in vitro, while at the same time remaining indifferent to or even favouring infection by X4 strains. Furthermore, visfatin exerts a direct effect on the relative fitness of R5 versus X4 infections in a viral competition setup. Direct interaction of visfatin with the CCR5 receptor is proposed as a putative mechanism for this differential effect. Possible in vivo relevance of visfatin induction is illustrated by its association with the dominance of CXCR4-using HIV in the plasma. Conclusions: As an innate factor produced by monocytes, visfatin is capable of inhibiting infections by R5 but not X4 strains, reflecting a potential selective pressure against R5 viruses. © 2012 Van den Bergh et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

    Get PDF
    Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication
    corecore